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Methods of optimal control theory [1, 2] are used to solve the problem of constructing attainability sets for a non-linear dynamical 
system known as the non-holonomic Brockett integrator [3]. It is proved that the boundaries of attainability sets are characterized 
by points of optimal trajectories constructed for a control problem whose integral performance index defines the area of the 
figure bounded by a trajectory of motion of the controlled system. The problem is to maximize that area. This formulation is 
similar to that of Dido's problem in the calculus of variations, namely, to construct a figure of maximum area for a given perimeter. 
An algorithm is proposed for constructing optimal trajectories and their properties are investigated. The algorithm is based on 
results obtained by solving a special case of the optimal control problem with a closed trajectory of motion.The necessary optimality 
conditions of Pontryagin's Maximum Principle are verified for the optimal trajectories constructed. Analytical formulae are derived 
for the value function of the control problem and the necessary and sufficient conditions for optimally are verified using Subbotin's 
minimax inequalities for Hamilton-Jacobi equations. © 2004 Elsevier Ltd. All rights reserved. 

The Brockett integrator [3] is one of the first classical examples of a system for which solution of the 
control problem requires the introduction of a non-linear (discontinuous) control law. After a suitable 
change of variables, this system describes the behaviour of many mechanical objects: a wheeled mobile 
robot, a asynchronous electric motor with high-gain loop currents, and a rigid body with two controllable 
velocity-correction parameters. The system has been investigated in various publications [4-7]. Problems 
of stabilizing the Brockett integrator by means of discontinuous control laws have been considered [4], 
and exponential estimates have been proposed for the approach of the system to equilibrium. In the 
context of proximal analysis, it has been proved that the Brockett integrator has no continuous 
stabilization strategies [5]. An interior estimate has been obtained for the attainability set of the system 
[6]. 

Control problems for mechanical systems were studied in [7, 8], whose results will be used below to 
investigate closed optimal trajectories of motion of the object. 

The problem will be investigated using methods of optimal control theory [1, 2, 9] and the theory of 
differential games [10-12]. At the root of the construction are trajectories that steer the system to the 
boundary of the attainability set [1, 2, 9, 10]. The necessary conditions of the Pontryagin Maximum 
Principle are derived for these trajectories [2]. In parallel with the construction of attainability sets, the 
problem of the analytical computation of the value function will be solved. Necessary and sufficient 
optimality conditions, in the form of Subbotin's differential inequalities [11-15], will be verified for 
analytical-formulae of the value function. 

1. F O R M U L A T I O N  O F  P R O B L E M  1: C O N S T R U C T I O N  O F  T H E  
A T T A I N A B I L I T Y  S E T  A N D  A N A L Y S I S  O F  I T S  P R O P E R T I E S  

Consider the Brockett integrator, that is, the controlled system 

J~l = UI ,  X2 = U2, -~3 = X 1 U 2 - X 2 U 1 ,  X(O) = ( 0 , 0 , 0 )  (1.1) 

?PriM. Mat. Mekh. Vol. 68, No. 5, pp. 707-724, 2004. 
0021-8928/S--see front matter. © 2004 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.jappmathmech.2004.09.001 



632 S.A. Vdovin et al. 

Iu, I-< l, Iv21 _< 1 (1.2) 

where X = (X1, X2, X3) is the phase vector of the system, Uj = Uj(t) (j = 1, 2) are the controls and 
t ~ [0, oo) is the time. 

It is required to find the attainability setA = A(T)  of the system at time T, 0 < t < T, T ~ [0, oo), that 
is, to determine the set of points (XI(T),X2(T),X3(T)) at which system (1.1) will arrive at time T under 
arbitrarily chosen measurable controls 

uj = u~(t), Iuj(t)[_<l, O<_t<_T, j = 1,2 

Definition 1. Measurable functions Ul(t ) and Uz(t) that satisfy conditions (1.2) will be called admissible 
controls. 

Definition 2. A trajectoryX(t), t a [0, T], of system (1.1) generated by an admissible control will be 
called an admissible trajectory. 

By an admissible trajectory (Xl(t), X2(t)), t ~ [0, T] in the X1, X2 plane we mean the projection of an 
admissible trajectory X(t) onto the X1, X2 plane. 

According to constraints (1.2), the set of admissible values of  the vector Ul(t), U2(t) is a square with 
centre at the origin and side equal to 2 (which we denote by P, and by ~P the boundary of the square P). 

Properties of trajectories 

Property 1. The projection of the attainability set onto the X1, X2 plane is a square K with centre at 
the origin and side 2T. 

Proof. The coordinate XI(T) satisfies the relation 

T 

XI(T ) = IUl(t)dt 
o 

By the first condition (1.2), -T  < XI(T) < T, and similarly for X2(T). 
To construct the attainability set, it will suffice to find, for every point (X1, X2) in the square K, a set 

{XI(T), XE(T), X3(T): XI(T) = X1, XE(T) = X2} at which the system may arrive at time T. 

Definition 3. The resultant displacement vector (denoted by VR) is defined as the vector in the X1, 
X2 plane connecting the origin (0, 0) to the final state of the trajectory (XI(T), X2(T)). 

Let S = (XI(T), X2(T)) be an admissible trajectory generated by an admissible control (Ul(t), U2(t)). 
Complete S to a closed curve L by a segment ZO connecting the point (XI(T), X2(T)) to the origin O, 

the domain bounded be L. The symbol L (L-) will denote the curve L as shown in Fig. 1. Let D be + 
described in the counterclockwise (clockwise) sense. 

Property 2. Trajectories X(T), t a [0, T] satisfy the following integral relations 

X3(T)=-2~X2dXl, X3(T)=-2HdX2dX, 
L D 

Proof. By Green's formula 

I f  dX2dXl "~ --I X2dXl -- I X2dX1-- I X2dX1 + I X2dX' ~ I X2dXI XI(T)X2(T) (1.3) 
2 

D L ÷ L- S ZO S 

Integrating the equations of dynamics (1.1) by parts, we transform the expression for X3(T) as follows: 

T 

X3(T) = X,(T)X2(T)-2IX2(t)dX,(t)= 2IfdX2dX 1 =-2IX2dX I (1 .4)  

o D L 

where we have used relations (1.3). 
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The quantity X3(T) is defined, apart from the sign, by the area of the figure bounded by the 
curve L. 

If VR is the zero vector, the curves L and S in the last integral of (1.4) coincide. 
We will consider the following symmetric transformations of the admissible trajectory S: symmetries 

$1 and $2 relative to the coordinate angles axes X 1 and X2 symmetries $3 and $4 relative to the bisectors 
of the first and second coordinate angles, and central symmetry $5 relative to the midpoint of the resultant 
displacement vector. 

Proposition 1. The symmetries S1 . . . . .  $5 are admissible trajectories in the X1, X2 plane. 

Proof. Let (Ul(t), U2(t)) be an admissible control. To construct $3, we need only take the symmetric 
control 

U~(t) = U2(t), U~(t) = Ul(t) (1.5) 

as the generator of an admissible control. This may be done because U1 and U2 have the same sets of 
admissible values. To construct $4, we just switch the signs of both coordinates of Eq. (1.5). To construct 
$1($2), reverse the sign of the first (second) coordinate of control (1.5). 

To construct $5, we choose the control 

U~(t) = UI(T- t), U~(t) = U2(T-t) 

The points X , ( T - t )  and X(t) are symmetric with respect to this mapping (Fig. 1). 
We will show that the admissible path $5 is indeed symmetric to the original path S relative to the 

midpoint of the vector VR. Such a symmetry must satisfy the relation 

X ,  = VRI2+(VRI2-X)  = V R - X  
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The truth of this relation follows from the definition of U*(t). Indeed, 

T - t  T - t  

x * ( r - t )  = = S = 
0 0 

T T 

= ~ v ( r  - "c)d'c - SU(T-  "c)d'r, = X(T) - X(t) 
0 t 

Corollary. Proposition 1 implies that the third coordinate of the motion for the symmetry Ss satisfies 
the symmetry formulaX~(T) = -X3(T). Due to this symmetry, we need only construct the attainability 
set for positive (or negative) third coordinates. 

Proof. Figures bounded by symmetric trajectories have equal areas. By Property 2, the absolute value 
of X3(T) equals twice the area of the figure bounded by the completed trajectory of motion. If the 
direction of motion is changed, the sign of X3(T) is reversed. 

Let H be the set of points of the square K below or on the bisector of the first coordinate angle in 
the first quadrant (Fig. 1). Fix a point Z ~ H. Consider the trajectories (Xa(t),X2(t),X3(t)) of the system 
such that the endpoint of the resultant sector VR in the X1, X2 plane is Z. 

Let M = M(Z) be the maximum of the set of the third coordinates X3(T) of the points (XI(T), X2(T), 
X3(T)) of such trajectories. 

Property 3. All the points of the segment I(Z) whose endpoints are (Z, M(Z)) and (Z, 0) lie in the 
attainability set A (T). 

Proof. Let U(t) be a control that steers the system from the origin (0, 0, 0) to the point (Z, M(Z)) 
and let X(t) = (Xl(t), X2(t)) be the projection of the corresponding trajectory onto the X1, X2 plane. 
Construct a control U* = U*(c~, t) that steers the system to any pointof the segment I(Z). For such a 
control we have VR = Z, X3(T) = aM(Z), 0 < a < 1. We put { = t/a, T = T/a. Suppose 

U(7), O<7_<T 

U*(a , t )=  VRI(T-aT) ,  T<7<7" 

Then the projection of the corresponding trajectory onto the X1, X2 plane is defined by 

= IaX(7), O<7<T 
X*(a, t) [ VRtlT, T < t < T  

Accordingly, the area of the figure D* bounded by the trajectory X*((x, t) and the resultant 
displacement vector equals the area of the figure D multiplied by a (see Fig. 1). By Property 2 

x . . . . :  - m  <,x:<,x. : o.,<,,,, 
D *  " D / 

Let us assume that the quantities M(Z) have been constructed for all points Z of H. By Property 3 
and the corollary to Proposition 1, the set of points 

A(H) = {(Z,m): Z~ H , - M ( Z ) < m < M ( Z ) }  

is contained in the attainability set A. 

Property 4. The attainability setA may be constructed on the basis of symmetry properties from the 
setA(H), by means of the following algorithm: First, applying the symmetry $1 toA(H), construct the 
attainability set in the first quadrant; then, applying the symmetry $2, in the second quadrant; and finally, 
applying the symmetry $3, in the third and fourth quadrants. 



Construction of the attainability set of a Brockett integrator 635 

Thus, the problem of constructing attainability sets reduces to determining a control that will steer 
the system from the origin to the point (Z, M(Z)) or, symmetrically, the point (Z, -M(Z)). In other 
words, it required to find a control U(t) that will maximize (minimize) X3(T) as a functional of the 
corresponding trajectories (Xl(t), X2(t), X3(t)) of the system. By Property 2, minimization of the functional 
Xa(T) is equivalent to the following control problem (Problem 2) 

T 

I = I X 2 d X l - - )  max (I.6) 
o 

x ,  = v , ,  xz  = uz; Iu,l  1, Iu2l_< 1 
(1.7) 

Xl(O) = X2(O ) 0, (XI(T), X2(T)) ~ H 

In this two-dimensional control problem, the initial point of the trajectory is fixed at the origin O 
and the right end at an arbitrary point (XI(T), Xz(T)) of the set H. 

We recall that, according to optimal control theory [2], any part of an optimal trajectory is also optimal. 
On the basis of this property, the solution of Problem 2 can be reduced to analysing the special case 
of Problem 2 with a closed trajectory. Let us call this special case Problem 3. The corresponding system 
(which we call System A) differs from system (1.7) in that the condition (XI(T), X2(T)) ~ H is replaced 
byX~(T) = X2(T) = 0. 

Problem 3 is to find a control that will steer System A from the origin to the origin and maximize 
the functional I of (1.6). 

2. T H E  S O L U T I O N  OF P R O B L E M  3 

Let U(t) = (Ul(t), U2(t)) be an admissible control defined in the interval [0, T], and let X(t) = (Xl(t), 
X2(t)) be the corresponding trajectory of motion of System A. Let U*(s) = (U~(s), U~(s)), s ~ [0, S] 
denote a control lying on the boundary of the square P and generating a trajectory X*(s) = (X~(s), 
X~(s)) so that the images of the trajectories X(t) and X*(s) coincide, that is, 

{X( t ) ,O<t<T}  = {X*( t ) ,O<t<T} 

Proposition 2. A control U*(s), s ~ [0, S] may be constructed for any control U(t), t ~ [0, T]. Under  
these conditions S < T. 

Proof. Let t ~ [0, T]. Fixx ~ [0, T]. Choose a function ~.(x) > 1 such that ~,(x)U(x) ~ 3P, and define 
a new variable 

y = y(x) = IL(~) 
o 

The new time variable is defined by s = y(t). Moreover, y = y(x) is a strictly increasing function, so 
that its inverse x = x(y) exists. Make the change of variables x = x(y) in the definite integral for the 
trajectory of motion of System A. We have 

t l $ $ 

X(t) = IU(x)dx= IU(x)2L(X)~x) = IU(x(y))2L(x(y))dy = IU*(y)dy= X*(s) 
0 0 0 0 

Thus, the required control U* on the boundary of the square P is defined by U*(y) = 
U(x(y))~(x(y)). 

Proposition 3. Problem 3 is equivalent to a problem in which the control U(t) = (Ul(t), U2(t)) lie on 
the boundary of the square P, that is 

max{IUl(t)  I, IUz(t)l} = 1 

Proof. Let 11 be the optimal value of the function I in Problem 3 with U(t) ~ P, and let 12 be the 
optimal value of the function I for the analogous problem with U(t) ~ bP. Clearly, 12 < 11, since 3P c P. 
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We will show that 12 -> 11. Let U(t) be an optimal control for which the value 11 of the functional I in 
Problem 3 is a maximum. It follows from Proposition 2 that the trajectory generated by a control 
U(t) ~ P, t ~ [0, T], may be generated by a control U*(s) ~ OP, s ~ [0, S], with S < T. We define a control 
U*(s) in the interval (S, T] as follows: 

~U *(S), s~  (S , (S+ T)I2] 
U*(s) = [ -U*(S) ,  s ~ ((S+ T)I2, T] 

T 
TheX*(T) = X*(S) and SX~dX~ = O. ConsequentlY, by construction of U*(s), s ~ [0, T], we have the 
chain of relations s 

T S T 

o o o 

We finally obtain 11 = 12. 

Proposition 4. Problem 3 is equivalent to a problem in which the controls U(t) = (Ul(t), U2(t)) lie 
for almost all t at the vertices of the square P: 

Iu , ( t ) [  = 1,  Iu2(t)[  = 1 

Proof. By Proposition 3, we may consider an equivalent problem in which U(t) ~ OP. Let 12 be the 
optimal value of the functional I in that problem and let 13 be the optimal value of the functional I for 
a problem in which U(t) lies at the vertices of the square. Clearly, 13 -< 12. 

We will show that 13 > 12. Let U(t) be an optimal control which maximizes the value of I2. Let 7"1 denote 
the set of points t ~ [0, T] for which Ul(t) = 1. By definition of a measurable function, the set 7"1 is 
measurable. We can assume without loss of generality that the measure ~t(T1) of the set 7"1 is positive. 
Let n > 1 be a given number, and consider a partition of the interval [0, T] with diameter (0.1)nT. Let 
Jn denote the set of subintervals of the partition that lie entirely in T1. Let d,  be the sum of lengths of 
the subintervals inJn. By the definition of measure, d(Jn) $ ~t(T1) as n ~ o~. Beginning with some number 
n, the set J, is not empty. Indeed, fix e = ~t(T1)/2; then, by the definition of limit, n(E) exists such that, 
for all n > n(e), we have the inequality Ix(T1) - d(Jn) < ~t(T1)/2, that is, d(J,) > ~t(T1)/2 > 0. 

Consider an interval J = [tl, t2] in the set J,. We have Ul(t) = 1, I U2(t) I --- 1, t e J. The motion of the 
system occurs toward the right from the initial point X(tl) = (Xl(tl), X2(t0) to the final point X(t2) = 
(Xl(t2), X2(t2)). Construct a trajectory X*(t) = (X~ (t), X~ (t)) over the interval [tl, t2] which has the same 
initial and final points but is generated by the control 

Ul(t) = 1, U2(t) = , t e  [x, t2) 

where the switching time x is defined by 

t i + ( A T  + A X 2 ) / 2  = ( t  I + t 2 + X 2 ( t 2 )  - X2(tt))12 

The trajectories X(t), X*(t) are shown in Fig. 2. For these trajectories, 

dX 1 = dX~ = Ul(t)dt = dt>O, X~(t)>X2(t  ), t~  [t l,t2] 

These relations imply the inequality 

t 2 1' 2 

~X~(t)dX~(t)  <_ ~X2(t)dXl(t  ) 
t l  t 1 

Taking the limit as n ~ oo in the partition of the interval [0, T], we obtain 

f X~(t)dX~(t) < f X2(t)dX 1 (t) 
TI TI 
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Analogous arguments can be used for the set 

T 2 = { t :  t~  [0, T], U2(t ) = - 1 }  = [0, T]\T l 

Combining these arguments, we obtain 12 --- 13, and hence 12 = 13. 
Let • denote the figure bounded by a trajectoryX(t) in Problem 3 that has the maximum area among 

all such figures. 

T~22oposition 5. The optimal trajectory of Problem 3 is the boundary of a rectangle with given perimeter 

Proof. We will show that, for any figure ~, generated by an admissible control U(t), there is a rectangle 
• *, generated by admissible control U* (t) and with area at least that of ~. The curve in Fig. 3 represents 
the boundary of O. The rectangle ~* is constructed, for example, in two steps: first, draw a circumscribed 
rectangle of least area around • with sides parallel to the bisectors of the coordinate angles; then displace 
the rectangle parallel to itself until its lower corner is at the origin. 

LetA, B, C, D denote arbitrary points at which the different sides of the rectangle touch the figure 
(Fig. 3). Consider the point B and C. As in the proof of Proposition 4, we construct an admissible 

control U,(t) that steers the point B to C along the boundary of the rectangle in a time not exceeding 
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the time of motion along the original trajectory. In the process, the area of the figure described by the 
new trajectory can only increase. Similar reasoning holds for other combinations of adjacent points. 
We thus conclude that the area of the rectangle ~* is no less than that the figure ~. 

Of all rectangles having the same perimeter, the square has the greatest area. The solution of Problem 
3 is given by squares whose sides are parallel to the bisectors of the coordinate angles. The origin may 
lie at any point on the boundary of the square. 

Thus, Problem 3 is similar to Dido's problem [16]. We recall that Dido's problem [also known as the 
isoperimetric problem] is the classical problem of the calculus of of variations: to find a curve of given 
length bounding the figure of maximum area. The solution is given by a two-parameter family of circles; 
one parameter defines the length of the circle, the other, the position of the centre of the circle in the 
plane. 

By analogy with the solution of Dido's problem, the solution Problem 3 may also be described by a 
two-parameter family - not of circles but of the perimeters of squares. The parametric representation 
of the optimal trajectories has the form 

T 2 2 
XI(T, ao, a(t))  = ~ [ c o s  (a 0 -  a ) s i g n ( c o s ( a  - ao) ) - cos a o s i g n ( c o s ( - a o ) ) ]  

T 2 . 2 
X2( T, ao, a(  t ) ) = ~[sin ( ao - a ) s ign(  sin( a - ao) ) - sm aosign(sin(-ao))] 

a = a ( t ) ~  [0,2/t], a 0¢ [0,2x] 

where T and a0 are the parameters of the family. The parameter T defines the length of the trajectory, 
and the parameter a0, the position of the centre of the square in the plane. The parameter t is the time 
of motion along the trajectory. The function a(t)  is the angle between the radius-vector connecting the 
centre of the square to the origin and the radius-vector connecting the centre of the square to the point 
X ( T )  of the trajectory (Fig. 4). This parameter must satisfy the following differential equalities at points 
of differentiability 

d c o s 2 ( a o - a ( t ) ) l d t  = 1, d s i n 2 ( a o - a ( t ) ) l d t  = 1 

Fig. 4 
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3. THE S O L U T I O N  OF P R O B L E M  2 

We will look for trajectories solving Problem 2 as parts of the trajectories that solve problem 3. Fix a 
point X e H. Let T be the time of motion from the origin to X in Problem 2, i.e. X(T) = X. We must 
select parameters T* > T, a0 for which the trajectory of the solution of Problem 3 passes through X and 
the time of motion from the origin to X equals T. 

Using Property 2, the integral I equals the area bounded by the resultant displacement vector and 
the trajectory. Consider a square bounded by an optimal trajectory of Problem 3. Its sides are parallel 
to the bisectors of the coordinate angles, and its vertices, in clockwise order, are denoted byA. B, C, 
D, beginning with the lowest vertex. We recall that the length of the side of this square is r = 4-~T*/4. 
Let us consider all possible trajectories solving Problem 3 that run along the perimeter of a square with 
side r from the origin O to the point X in time T, assuming that the origin lies on the side AB of the 
square ABCD. 

In this case, all possible positions of such squares are described by two parameters: the length r of 
the side of the squareABCD and the distance d from the point O to the vertexA. 

In addition, there are two possible positions of the resultant displacement vector for these trajectories. 
In the first version, the trajectory runs along three sides of the square, being made up of the segments 
OB, BC and CX. In the second, the trajectory runs along all four sides of the square and is made up 
of the segments OB, BC, CD and DX (Fig. 5). 

Consider the right-angled triangle OXWwhose hypotenuse is the vector OX, and whose legs OWand 
XWlie below the hypotenuse and are parallel to the bisectors of the first and second coordinate angles. 

Proposition 6. The length of the legs OWandXWof  the triangle OXWare determined by the coordi- 
nates of the vector X and given by 

low1 = ~_, Ixwl = ~+; ~± = (x~ + x 2 ) / ~  

The proof is obvious. 
The parameters r and d must be determined from two equations defining the final point X of the 

trajectory and the time T of motion along it. Using Proposition 6, we determine the parameters r and 
d for both possible positions of the resultant displacement vector. 

In the first version. 

r = ~÷, 4r2T = r + 2 a + ~ _  
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whence d = (T - X1)/'1-2. In addition, the parameter d must satisfy the inequality d ___ r - 4- It follows 
from these relations that a solution of this type exists only for points of the triangle H that satisfy the 
inequality X2 > ( T -  X1)/2. 

In the first version, the area of the figure bounded by the resultant displacement vector and trajectory 
of motion equals the area of the quadrilateral OBCX and is computed by the formula 

I 1 = rd + r4_12 = ( , f 2 r -  4,)4,/2 (3.1) 

Similarly, for the second version, the parameter r and d must be determined by two equations defining 
the final point X and the time T of motion along it. Then 

,f2T = 4 r - ( 4  +4+ ), d = r - 4 _ ~ r  = (T+Xl)/(2#r2),  d = T/(24r2)+4+ 

In addition, the parameter r must satisfy the inequality r > 4+- It follows from these relations that a 
solution of this type exists only for points of the triangle H that satisfy the inequality )(2 <- (T-)(1)/2. 

In the second version, the area of the figure bounded by the resultant displacement vector and the 
trajectory of motion equals the area of the pentagon OBCDX and is computed by the formula 

12 = r 2 - 4_;+/2 = (T 2 + 2TXl  - x 2 + 2x~)/8 (3.2) 

The solution of Problem 2 depends on the coordinates (XI(T), X2(T)) = (X1, X2) ~ H of the right 
end of the trajectory of the system and may be expressed as 

= I II(T' Xl, X2), 
I(T, XI, X2) [12( T, Xl, X2), 

X 2 > ( T -  XI)I2 
(3.3) 

X 2 <- ( T -  XI)I2 

Consequently, by Property 2, the upper boundary of the attainability set in the triangle H is the graph 
of the function 

X3(T, X 1, X2) ---- 21(T, X l, X2) (3.4) 

The function I(T, Xl ,  X2) is determined by formulae (3.1)-(3.3). 
Using Property 5, the boundaries of the attainability sets for T = 4 have been constructed for 

T = 4 (Fig. 6). 

We will now 
Principle [2] 
as 

4. V E R I F I C A T I O N  OF THE NECESSARY C O N D I T I O N S  FOR 
O P T I M A L I T Y  OF THE T R A J E C T O R I E S  

verify that the trajectories obtained by solving Problem 3 satisfy Pontryagin's Maximum 
for Problem 1. We rewrite problem 1 for the lower boundary of the attainability domain 

T 

I = f ( X l U  2 -- X2UI)dt  --> min 

o 

• ~1 = UI,  "I~'2 ---- U2, lUll < 1, IU2I _< 1; X I ( 0  ) = X I ( T  ) = X2(0 ) = X2(T ) = 0 

(4.1) 

The system of equations of the Maximum Principle for the auxiliary conjugate variables ~i is 

2 bf,~(x, u)~¢,~ 

ot=O 

Taking into account that 

f l ( x ,  U) = U 1, f 2 ( X ,  U) = U2, f0 (X ,  U) = X 1 U E - X 2 U  1 
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Fig. 6 

we have 

~/1-----U2~I/0, ~1/2 = Ul~0, ~t0 = 0 (4.2) 

Integrating this system, we get 

~ll ---- - ( X 2 + C l ) C ,  ¥2 --" (Xl +c2 )c ,  ~/0 = C (4,3) 

By the conditions of the Maximum Principle for a problem with fixed time, we must choose the 
negative value for the constant x. 

The Hamiltonian of system (4.1) is 

H(V, X, U) = 
2 

E fa(X' U)Va = 
t l=0 

= ( X l U  2 -  X 2 U 1 ) ¢ -  UI (X  2 + ¢1)¢ + U2(X 1 + c2)c 

(4.4) 

A necessary condition for the Maximum Principle to be valid is that 

H ( ~ , X , U ) - -  maxH(~,  X, V), U = (U 1,U2), V = (V l ,V 2) 
v ~ P  

and this condition in turn transforms into the equality 

U2(2X ~ + c 2) - UI(2X 2 + c l) = 12X 2 + cl1 + 12x, + ¢21 (4.5) 
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We will verify that the optimal trajectories of Problem 3 satisfy this relation. Indeed, the optimal 
trajectory is the boundary of a square; let the centre of the square have coordinates (cgl, Ck2). Clearly, 
for optimal trajectories the following relations hold 

u2(x  - u (x2- ck2) = - + IX2-ck -I 

Now, choosing the parameters cl = -2Ckl ,  c2 = --2Ck2, we obtain the required relation (4.5). 

5. V E R I F I C A T I O N  OF THE S U F F I C I E N T  C O N D I T I O N S  FOR 
O P T I M A L I T Y  OF T R A J E C T O R I E S  

Our solution of Problem 2 will now be used to synthesize the optimal result function (the value function). 
For the value function, we will verify the necessary and sufficient conditions - differential inequalities 
[11] satisfied by the generalized (minimax, viscosity) solution of a Hamilton-Jacobi equation. 

Consider the problem dual to Problem 2: 

T 

1 = ~(XiU2-X2Ul) - - ->max  

(5.1) 
x,  = u, ,  x ;  = v=; lu,l-< I,  Iv=l-< 1 

Xl(To) = X 1, X2(T0) = X2, Xl(T)  = X2(T) = 0; O < T o < T  

In this two-dimensional control problem, the initial point of the trajectory is fixed at an arbitrary point 
in the (X1, X2) plane, and the right endpoint is fixed at the origin (0, 0). The solution of this problem 
is obtained from the solution of Problem 2. 

We set up the value function for the problem (5.1) from the function (3.4). It takes finite values in 
the controllability domain of system (5.1), which is cone in the space of variables X1, X2 and T, defined 
by the relation IX11 < T -  To, IX21 -- T - T 0. 

Outside the controllability cone, the value function must be defined as minus infinity, since the problem 
of steering a trajectory of system (5.1) from a point (X1, X2) to the origin (0, 0) in time T -  To is unsolvable. 

The controllability cone is divided into 16 domains, in each of which an analytical formula has been 
found for the value function. We will present expressions for the value function W(X1, X2, T - To) at 
the points of the domain {(X1, X2, T)" 0 _< X1 < T - To, 0 _< X 2 _< T - To, X 2 _< X1} corresponding to the 
triangle H. We introduce the following notation 

~j = ( T - T  O - X j ) I 2 ,  9 = aOlaX, 90 = a~laTo,  9j = adPlaXj; j = 1,2 

We have 

f(~l ÷ ~ 2 ) ( X l  4" X2)  , i f  X2 > ~l 
tb(X I, X2, T To) 

[(~! +XI) 2-(X~-X~)/2,  if X2<~1 

For the other domains, the value function W can then be determined using the symmetries of 
Proposition 1 (see Fig. 7). 

For the corresponding domains and the value function W, the Hamilton-Jacobi equation 

H(X, 9 ) + 9 o  = 0 

must hold, where 

H(x, 9) = max (U,9 ,  + U292 + X, U 2 - X 2 U  ,) = 19, -Xzl + 192 + X,[ 
Uj, V 2 

For domain 1 (Fig. 7) we have 

91 = ~l,  92 = X2, 90 - - ~ l - X l  

and the Hamilton-Jacobi equation is obviously satisfied. The validity of the Hamilton-Jacobi equation 
for domain 2 can be verified similarly. 
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x2 
B 

N ~ ( X 2 ,  -XI, T- T0) XI, T _ T ~ ~  
@(X2, 

~ .. domain 2 

/ 

0 ' 

) 

/ ¢')(-X2'-XI'T-T°) ¢~-X2,XI, T-To) 

Fig. 7 

at-r0 
c ;, 

The 16 domains under consideration, glued together two by two, yield 20 surfaces. The situation is 
pictured schematically in Fig. 7 in two dimensions, with the glued surfaces represented by segments. 
For the 12 surfaces OC, AC, AB and their symmetric images, the gluing operation is smooth. For the 
four surfaces OA and its symmetric images, the gluing is not smooth, but involves the operation of taking 
the maximum of two functions. For example, on the surface OA, the maximum operation is used to 
glue together the two functions (I)(X1, X2, T - To) and ~(X2, X1, T - To). 

On four lines, namely, A and its symmetric images, four functions are smoothly glued together. 
On the lines associated with the origin O, 8 functions are glued together. Of these, four are glued 

together smoothly, forming for smooth functions, which are then glued together non-smoothly using 
the maximum operation. 

On the boundary of the controllability cone, functions taking a finite value are glued together with 
functions taking the value minus infinity. The gluing operation takes places in these cases on the faces 
and edges of the cone. 

Let us verify that the functions on the surfaces OC, AC andAB are glued together smoothly. 
On the surface OC (X2 = 0), the gradients of the functions being glued together, F1 = ~(X1, X2, 

T - To) and F 2 = ~(X1, -X2, T - To), satisfy the relations 

OFl ()F2 i)Fl X2 oc -X2 oc ~F2 ()FI ~F2 
~x~ -- ~ -- ~ ' '  ~ -- = 0 = = ~x2' ~r0 -- ~ 0  -- - ~ ' -  xl  

On the surface AC (X2 = ~1), the components of the function • are glued together smoothly: 

r~ = ( ~  + ~2)(x~ + x2), F2 = (~, + x~) 2 -  (x~ - x~)/2 (5.2) 

Now let us consider the surface AB, on which the functions constructed using the symmetry S 3 are 
glued together. On this surface the function • is equal to (~1 + ~2)(X1 + X2) and itself satisfies the 
symmetry property $3. In the neighbourhood of the surfaceAB, therefore, the value function is described 
by the values of a smooth function * which, as shown previously, satisfies a Hamilton-Jacobi equation. 

We will now verify that on the surface OA, where the two functions 

2 2 2 + x2) 2 - ( x ~  x~)/2 FI = (~I+Xi)  -(XI-X2)/2" F2 = (~2 
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are glued together non-smoothly using the maximum operation, the generalized gradients [11] of the 
value function satisfy inequalities that replace the Hamilton-Jacobi equations: 

H(x, q~) + Cpo < O, where (9, ~P0) ~ D-~(T,  T o, X) (5.3) 

H(x, q>) + q>o > O, where (q>, ~0o) ~ D+~(T, T o, X) (5.4) 

The sets D + and D- are the superdifferential and subdifferential, respectively, of the function F, defined 
by 

O+a#(T, T o, X) = {plOOe(T, T o, X)_> (p, e) for all e} 

D-*(T,  T o, X) = {pl~Oe(T, T o, X) < (p, e) for all e} 

where DOe(T, To, X )  is the derivative of the function • in the direction e = (ero, ex) 

• (T, T O + fief0, X + 5ex) - ~(T,  T o, X) 
~ e ( T ,  T 0, X) = lim 

s ~ o  8 

On the surface OA 

O~e(T, T o, X) = max (VFj, e) = ( -  ~! - X1)er o + max{~lel + X2e2, Xlel + ~le2} 
j = l , 2  

(OFj ~Tj OFj~ 
VF, = k~oo' bX~' aX"~2)' Fj = FjtT, To, X) 

The subdifferential is given by 

D-~(T ,  To, X) = co{VFt,  VF2} = { a V F  1 + ( 1 - a ) V F 2 :  a ~ [0, 1]}Ix, =x2= r = 

. = { ( -1 ]+ ,aY +( 1 - a ) r l_ ,a l ]_+( 1 - a ) Y ) :a~  [0, 1] ,Y~ [O,(T-To)I3]}  

rl+ = (r- To+ r)12 

The superdifferential of the function • on the surface 0.4 is the empty set, and so inequality (5.4) 
holds automatically. 

To verify inequality (5.3), we compute its left-hand side for vectors of the subdifferential D-O(T, 
To, X): 

H(x,  q~) + q~o = - n +  + l a ( T -  To - 3 r)/21 + II1+ - a (  T -  T O - 3 V)/2 I 

This expression clearly takes non-positive values, since it vanishes identically at a ~ [0, 1], Y 
[0, [T- T0)/3]. 

Thus, the differential inequalities (5.3) and (5.4) hold at all points of the surface 0.4. On the line 
O(X1 = X2 = 0), 4 smooth functions are glued together using the maximum operation. The super- 
differential of the resulting function is given by 

O-t~(T, To, X)] 0 = co{VF1, VF2, VF3, VF4}] O 

VFI. 3 = ( -  ~1 - XI, +~1, +X2) = (-% +% 0), 

VF2, 4 = ( -~1-X1 ,+X2 ,+~I )  = ( -%0,+x) ;  x = (T -To) I2  

The subdifferential is a square in the X1, X 2 plane with centre at the origin and sides parallel to the 
bisectors of the coordinate angles: 

D-~(T ,  T 0, X)lx, = x2 = 0 = { (q~o, q~,, ~P2): q)o = - x, I ,1 + 1 21 - x < 0}  (5.5) 

To verify inequality (5.3), we evaluate its left-hand side for vectors of the subdifferential (%, Cpl, cp2) 
D-O(T, To, X) .  We have 

H(x, tp) + tpo = Itpl[ + I 21 - 



Construction of the attainability set of a Brockett integrator 645 

By (5.5), the Hamiltonian takes non-positive values. 
The superdifferential of • on the line O is the empty set, so that inequality (5.4) holds automatically. 
We will now verify that the differential inequalities for the generalized gradients [11] of the value 

function, replacing the Hamiltonian-Jacobi equation, are also satisfied on the boundary of the 
attainability set - the surface BC, on which the finite and infinite values of the value function are glued 
together. 

The directional derivative of the value function on the surface BC is 

l ,e),  e r0+ex~<0 

(the function F1 is defined by the first formula of (5.2)). 
We will now compute the superdifferential of the function ~.  By definition, 

{ ~ i - " 0 <  (p ' e )  if ero+ex,>O 

D+~P(T, T o, X) = ( V F  l, e) <_ (p, e) if er0 + ex, <_ 0 

Since the upper inequality of the system holds for all vectors P, the superdifferential is defined by 
the lower inequality only. This inequality must hold at all points in the half-space defined by ero + exl < O. 
Hence, the vectors VF1 - p  are perpendicular to the plane eT0 + exl = 0 and have the same direction 
as the vector (1, 1, 0). Then 

VF l - p  = (a,a,O), a~  [0, oo] 

Finally, we obtain the following formula for the superdifferential 

D+~(T, To, X)IB c = {p: p = VF 1 + ( - a , - a , O ) , a e  [0, oo]} = 

= {p: p = ( - X  l - X 2 - a , ~  I - X 2 / 2 - a , ~  1 - X 2 / 2 ) , a ~  [O, oo]} 
(5.6) 

The superdifferential is a ray emanating from the point VF1, codirectional with the vector (-1, -1, 0). 
Then inequality (5.4) may be written for the vectors of the superdifferential as follows: 

- X~ - X 2 - a + 12~1 - 2 X 2 -  a[ + 12~21 > 0 ,  a e [ 0 ,  oo] (5.7) 

Clearly, this inequality holds, since the expression in the first term with absolute value when expanded 
has a negative sign, while the second is positive. 

The subdifferential of the function q) on the surface BC is the empty set, and so inequality (5.3) holds 
automatically. 

We will now verify that the differential inequalities for the generalized gradients of the value function 
also hold on the edge of the controllability cone - the line B. 

The directional derivative of the value function on the line B is 

= ~ -  ~ if ero + ex, > O, eTo + ex2 > 0 

~dPe(T, T o, X) [(VFI, e) otherwise 

(the function F 1 is defined by the first formula of (5.2)). For the superdifferential we obtain a formula 
that differs from (5.6) only in the presence of the displacement vector (--b, 0, -b), defined by the additional 
degree of freedom b, b e [0, oo ], that is, the superdifferential is a convex cone with apex at the point 
VF1, generated by the vectors (-1, -1, 0), (-1, 0, -1). Then inequality (5.4) for the vectors of the super- 
differential differs from (5.7) in that the third term on the right is replaced by -(a  + b) and the last 
term by [2~2 - b [. It holds for the same reasons as (5.7). 

Thus, we have verified all Subbotin's differential inequalities for the value function W, that is, we 
have verified that it satisfies the necessary and sufficient optimality conditions and is a generalized 
solution of the Hamilton-Jacobi equation. 

We wish to dedicate this paper to the eightieth birthday of Academician N. N. Krasovskii. 
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